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SIR±MIR and SIRAS±MIRAS cases are studied by application of the joint

probability distribution method. The ®nal results are conditional probability

distributions of the protein phases given the structure-factor moduli of the

protein and of the derivatives, and the structure factors of the heavy-atom

substructures. The approach is able to treat errors arising from measurements,

from the heavy-atom structure model and from the lack of isomorphism. The

relations between the present approach and previous methods are described.

The formulas have been implemented in a procedure that is able to

automatically phase protein re¯ections up to protein resolution [Giacovazzo,

Ladisa & Siliqi (2002). Acta Cryst. A58, 598±604].

1. Notation

fj : scattering factor of the jth atom.

�p;�d;�H �
P

f 2
j , where the summation is extended to the

protein atoms, to the derivative, and to the heavy-atom

structure.

Fp �
PN

j�1 fj exp�2�ih � rj� � jFpj exp�i�p�: structure factor of

the native protein.

Ep � Ap � iBp � Rp exp�i�p� � Fp=�
1=2
p : normalized struc-

ture factor of the native protein.

FH �
P

fj exp�2�ih � rj� � jFHj exp�i�H�: structure factor of

the heavy-atom structure.

EH � AH � iBH � RH exp�i�H� � FH=�
1=2
p : EH is the struc-

ture factor of the heavy-atom structure, pseudo-normalized

with respect to the protein scattering power.

Fd �
P

gj exp�2�ih � rj� � jFdj exp�i�d�: structure factor of

the derivative.

Ed � Ad � iBd � Rd exp�i�d� � Fd=�
1=2
p : Ed is the structure

factor of the derivative, pseudo-normalized with respect to the

protein scattering power.

�iso � �jFdj ÿ jFpj�.

2. Introduction

The isomorphous replacement method is essentially based on

two steps: ®rst, the determination of the positions of the heavy

atoms, and then the estimation of the native protein phases via

the combined use of FH; jFpj; jFdj. The fundamental paper by

Blow & Crick (1959) has been the milestone for the second

step: the paper has been revisited by several authors, among

whom are Terwilliger & Eisenberg (1987), who give a more

detailed analysis of the errors due to lack of isomorphism,

inadequacy of the heavy-atom model and observational errors.

In particular, functions were obtained that estimate the

conditional probability for the native protein phases given the

prior information on FH; jFpj; jFdj.
The irruption of direct methods in the macromolecular area

(Hauptman, 1982) suggested that the classical two-step tech-

nique used by SIR and MIR methods could be replaced by a

one-step approach: the protein phases could be directly

obtained by application of the joint probability distributions

P�Ep;Ed� �1�
P�Eph;Epk;Eph�k;Edh;Edk;Edh�k�: �2�

Accordingly, the recovery of the heavy-atom positions was no

longer a necessary preliminary step for the phase assignment.

The distributions (1) and (2) were obtained under the

following assumptions: the scattering power of the heavy-atom

structure may be (at least roughly) estimated, and no lack of

isomorphism occurs. Under the same assumptions, a recent

series of papers (see Giacovazzo & Siliqi, 1997, and references

therein) made the direct-methods treatment of the SIR case

practicable in real cases.

In this paper, we will apply the joint probability distribution

method to derive the phase distribution functions useful for

SIR, MIR, SIRAS and MIRAS cases. The method has already

been applied: (a) by Giacovazzo & Siliqi (2001a,b,c) to treat

the SAD (single anomalous dispersion) and the MAD

(multiple anomalous dispersion) cases. New ef®cient prob-

abilistic formulas were proposed to estimate protein phases

given the anomalous scatterer positions; (b) by Burla et al.

(2002), for ®nding the anomalous scatterer positions given the

experimental diffraction moduli.



In this paper, we will adopt, for the SIR and MIR cases

(x3 of this paper), the probabilistic scenario described by

Giacovazzo & Siliqi (2001a,b,c), according to which

jFdj exp�i�d� � jFpj exp�i�p� � jFHj exp�i�H� � j�j exp�i��;
�3�

where j�j exp�i�� represents the cumulative error, the

components of which are errors due to lack of isomorphism,

errors in measurements and errors in the heavy-atom

substructure (Terwilliger & Eisenberg, 1983).

For the SIRAS and MIRAS cases (x4 of this paper), we will

assume that

jF�d j exp�i��d � � jFpj exp�i�p� � jF�H j exp�i�H� � j��j exp�i���
�4�

and

jFÿd j exp�i�ÿd � � jFpj exp�ÿi�p� � jFÿH j exp�i�ÿH�
� j�ÿj exp�i�ÿ�: �5�

3. SIR and MIR cases

3.1. The SIR case in P�1�1. The joint probability distribution
P(Ep,Ed|EH) and related distributions

Let us assume that

(a) the atomic positions of the native protein are the

primitive random variables of our probabilistic approach;

(b) some (or all) heavy atoms have been located, and FH is

the structure factor corresponding to them;

(c) the assumptions (4) hold, with h�i � 0.

The characteristic function of the distribution P(Ep, Ed|EH)

may be written as (see Appendix A)

C�up; ud� � hexp i�upEp � udEd�i
� exp�iudEH� expfÿ�u2

p � u2
d�1� �2� � 2upud�=2g;

�6�
where up and ud are carrying variables associated with Ep and

Ed, respectively,

�2 � j�j2��p:

The Fourier transform of (6) leads to

P�Ep;EdjEH� � �2��ÿ1�ÿ1 expfÿ�1=2�2���Ed ÿ EH�2
� �1� �2�E2

p ÿ 2Ep�Ed ÿ EH��g: �7�
Equation (7) is basic for all the conditional distributions. From

(7), we ®rst derive the marginal distribution P�Ep;RdjEH� and

then the conditional P�EpjRd;EH�:
P�EpjRd;EH� � L expfÿ�R2

d � �Ep � EH�2 � �2R2
p�=�2�2�g

� cosh�Rd�EH � Ep�=�2�; �8�
where L is a suitable scaling factor. Then the probability that

the sign sp of Ep is �1 is given by

P�sp � �1j. . .� � exp�ÿRpEH=�
2� cosh�Rd�EH � Rp�=�2�;

P�sp � ÿ1j. . .� � exp�RpEH=�
2� cosh�Rd�EH ÿ Rp�=�2�;

from which

P�sp � 1j. . .�=P�sp � ÿ1j. . .�

� exp�ÿ2RpEH=�
2� cosh�Rd�EH � Rp�=�2�

cosh�Rd�EH ÿ Rp�=�2� : �9�

Expression (9) does not coincide with formula (16) in Blow &

Crick (1959), where sinh replaces our cosh function: the two

expressions converge only when the arguments of cosh are

suf®ciently large.

The normalization of the sign probabilities [i.e. by imposing

P�sp � �1j. . .� � P�sp � ÿ1j. . .� � 1] leads to

P�sp � �1j. . .�

� 1� exp�2RpEH=�
2� cosh�Rd�EH ÿ Rp�=�2�

cosh�Rd�EH � Rp�=�2�
� �ÿ1

: �10�

In terms of structure factors, the probability function (10) may

be written as

P�sp � �1j. . .�

� 1� exp�2jFpjFH=hj�j2i�
cosh�jFdj�FH ÿ jFpj�=hj�j2i�
cosh�jFdj�FH � jFpj�=hj�j2i�

( )ÿ1

:

�11�

If the arguments of the cosh functions are large enough, then

cosh x may be approximated by 0.5 exp|x|, and the probability

(10) may be replaced by two very simple expressions:

P��p � �Hj:::� � 0:5� 0:5 tanhfRH�Rd ÿ Rp�=�2g
if Rp >RH; �12a�

P��p � �Hj:::� � 0:5� 0:5 tanhfRp�Rd ÿ RH�=�2g
if Rp <RH : �12b�

The probability (12b) takes care of the cases in which `over-

cross' occurs.

Let us now show that (8) encompasses the Blow & Crick

(1959) distribution. On assuming that the approximation

cosh x � 0:5 expjxj is valid, (12b) transforms into

P�EpjRd;EH� � L exp�ÿR2
p=2� expfÿ�Rd ÿ Rdcalc�2=�2�2�g;

where Edcalc � Ep � EH. In terms of structure factors,

P��p

��jFdj;FH� � L expfÿ�jFdj ÿ jFdcalcj�2=�2hj�j2i�g;

which agrees with the Blow & Crick (1959) formula.

3.2. The SIR case in P1. The joint probability distribution
P(Ep,Ed|EH) and related distributions

Under the same assumptions speci®ed for the centric case,

the characteristic function of the distribution P�Ep;EdjEH� in

P1 may be written as
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C�up; vp; ud; vd� � hexp i�upAp � vpBp � udAd � vdBd�i
� expfi�udAH � vdBH�g expfÿ 1

4 �u2
p � v2

p

� �1� j�2j��u2
d � v2

d� � 2upud � 2vpvd�g;
where up, vp, ud, vd are carrying variables associated with Ap,

Bp, Ad, Bd, respectively. The change of variables

up � �p cos p

vp � �p sin p

(
ud � �d cos d

vd � �d sin d

;

�
Ap � Rp cos�p

Bp � Rp sin�p

;

(
Ad � Rd cos�d

Bd � Rd sin�d

;

�
AH � RH cos�H

BH � RH sin�H

�
leads to

C��p; �d;  p;  d� d�p d�d d p d d

� �p�d exp�iRH�d cos� d ÿ �H��
� expfÿ 1

4 ��2
p � �1� �2��2

d � 2�p�d cos� d ÿ  p��g:
The Fourier inversion of the characteristic function gives

P�Rp;Rd; �p; �djEH�
� �ÿ2�RpRd=j�j2� exp

ÿ�ÿ1=�2�f�R2
d � R2

H

ÿ 2RdRH cos��d ÿ �H�� � �1� �2�R2
p

ÿ2RpRd cos��d ÿ �p� � 2RpRH cos��p ÿ �H �g�; �13�
which is the required joint probability distribution function.

Then the marginal distribution

P�Rp;Rd; �pjEH�
� ���2�ÿ12RpRd expf�ÿ1=�2��R2

d � R2
dcalc � �2R2

p�gI0�z�
�14�

is obtained, where I0 is the modi®ed Bessel function of order

zero,

z � 2RdRdcalc=�
2; �15�

Rdcalc � �R2
p � R2

H � 2RpRH cos��p ÿ �H��1=2:

Then a very simple phase probability is obtained,

P��pjRp;Rd;EH� � L exp
ÿ2RpRH

�2
cos��p ÿ �H�

� �
I0�z�;
�16�

where L is a suitable normalizing factor that may be calculated

via numerical methods.

In terms of structure factors, the distribution (16) becomes

P��p

��jFpj; jFdj;FH� � L exp
ÿ2jFpFHj
j�j2 cos��p ÿ �H�

� �
I0�z�;
�17�

where

z � 2jFdFdcalcj=j�j2 �18�
and

jFdcalcj � �jFpj2 � jFH j2 � 2jFpFH j cos��p ÿ �H��1=2:

Equation (17) is the required conditional phase distribution

and constitutes one of the main results of this paper.

3.3. About the conditional probability distribution
P(�p||Fp|,|Fd|, FH)

The distribution (17) deserves to be discussed with regard

to:

(a) its applicative aspects;

(b) its relation with classical Blow & Crick (1959) and

Terwilliger & Eisenberg (1987) distributions.

For the point (a), we note that, since �2 � 1; z is usually a

quite large number for any value of �p. For jzj suf®ciently

large, the following approximation (Abramowitz & Stegun,

1972) may be used:

I0�x� � expjxj=�2�jxj�1=2: �19�
Then numerical techniques (i.e. by calculating P in stepped �p

values between 0 and 2�) can be applied to derive the best

phase estimate and the relative variance. The simpler

approximation

I0�z� � exp�z2=4�
is discouraged because z is usually quite a large number for

any value of �p.

The favorable results obtained by us (Giacovazzo & Siliqi,

2001a, b,c) in the MAD case suggest a simpli®cation in the use

of (17) by introducing in (13) the approximation

�d � �p:

Then the simple conditional distribution

P��pjRp;Rd;EH� � �2�Io�G��ÿ1 exp�G cos��p ÿ �H�� �20�
is derived, where

G � 2�Rd ÿ Rp�RH=�
2 � 2�isojFHj=j�j2: �21�

According to (20), �H is the expected value of �p if �iso > 0,

otherwise �p is expected to be about �H � �. The larger the

product j�isoRHj=�2, the more accurate the expectation will

be. Equation (21) will be the formula we will use for the SIR

case in our practical applications.

To answer the point (b), we show that expression (14)

encompasses a Blow & Crick (1959) distribution. This may be

obtained from (14) via two approximations: ®rst (14) is

factorized as

P�Rp;Rd; �pjEH� � �Rp=����� expfÿR2
pg2Rd�

ÿ1

� expfÿ�R2
d � R2

dcalc�=�2gI0�2RdRdcalc=�
2�

and then (19) is applied. We obtain

P�Rp;Rd; �pjEH� � �Rp� expfÿR2
pg���ÿ3=2�Rd=Rdcalc�1=2

� expfÿ�Rd ÿ Rdcalc�2=�2g:
Then

P��pjRp;Rd;EH� � L�Rd=Rdcalc�1=2 expfÿ�Rd ÿ Rdcalc�2=�2g;
�22�

which, in terms of structure factors, transforms into



P��p

��jFpj; jFdj;FH�
� L�jFdj=jFdcalcj�1=2 expfÿ�jFdj ÿ jFdcalcj�2=j�j2g: �23�

Distribution (23) differs from the distribution obtained by

Blow & Crick (1959) owing to the presence of the factor

�Rd=Rdcalc�1=2. The effect of this factor on the distribution (23)

is negligible in practice since it is combined with the more

rapidly varying exponential function, unless jFpj is very small.

This last condition reduces the practical impact of (23);

however, the above calculations show that the Blow & Crick

(1959) probability function constitutes an approximation of

the distribution (17) provided by the more rigorous method of

the joint probability distribution functions.

3.4. The MIR case. The probability distribution P(Ep,Ed|EH) in
P�1�1

Suppose that:

(a) the diffraction data of n derivatives have been collected;

accordingly,

Ed � fEd1;Ed2; . . . ;Edng;
(b) the following relation may be established for each ith

derivative:

jFdij exp�i�di� � jFpij exp�i�pi� � jFHij exp�i�Hi� � j�ij exp�i#i�;
(c) �i is uncorrelated with �j for i 6� j, and h�ii � 0 for

any i.

Then the characteristic function of the distribution

P�Ep;EdjEH� � P�Ep;Ed1; . . . ;EdnjEH1; . . . ;EHn� �24�
is

C�up; ud1; :::; udn� � exp

�
i

�Pn
j�1

udjEHj

�
ÿ 1

2 u2
p ÿ 1

2

Pn
j�1

eju
2
dj

ÿ up

Pn
j�1

udj ÿ
Pn

j;q�1

udjudq

�
;

where up and udj are carrying variables associated with Ep and

Edj, respectively,

ej � 1� �2
j ; �2

j � j�jj2=�p:

The joint probability distribution (24) is then

P�Ep;EdjjEHj� � �2��ÿ�n�1� R�1
ÿ1

. . .
R�1
ÿ1

exp

�
ÿ i

�
upEp

�Pn
j�1

udj�Edj ÿ EHj�
�
ÿ 1

2

�
u2

p �
Pn
j�1

eju
2
dj

� 2up

Pn
j�1

udj � 2
Pn

j;q�1
j<q

udjudq

��
: �25�

In a shorter form, (25) may be rewritten as

P�Ep;EdjEH� � �2��ÿ�n�1� R�1
ÿ1

. . .
R�1
ÿ1

expfÿiTUÿ 1
2 UKUg dU;

where

T � �Ep; �Ed1 ÿ EH1�; . . . ; �Edn ÿ EHn��;
U � �up; ud1; . . . ; udn�;

K �

1 1 . . . 1

1 e1 . . . 1

. . . . . . . . . . . .

1 1 . . . en

���������

���������;
det K � Qn

j�1

�2
j :

Then

P�Ep;EdjEH� � �2��ÿ�n�1�=2�det K�ÿ1=2 exp

�
ÿ 1

2 �11E2
p

ÿ 1
2

Pn
j�1

�j�1;j�1�Edj ÿ EHj�2

ÿ Ep

Pn
j�1

�1;j�1�Edj ÿ EHj�

ÿ Pn
j;q�1
j<q

�j�1;q�1�Edj ÿ EHj��Edq ÿ EHq�
�
; �26�

where �jq are the elements of the matrix Kÿ1.

We note:

�11 � 1�Pn
j�1

�1=�2
j �;

�1;j�1 � ÿ�1=�2
j � if n> 1;

�j�1;j�1 � 1=�2
j :

Accordingly, the following relations hold:

�11 � 1ÿPn
j�1

�1;j�1; �j�1;j�1 � ÿ�1;j�1: �27�

Putting (27) into (26) gives

P�Ep;EdjEH� � �2��ÿ�n�1�=2�det K�ÿ1=2 exp

�
ÿ 1

2 E2
p

� 1
2

Pn
j�1

�1;j�1�Ep ÿ �Edj ÿ EHj��2

ÿ Pn
j;q�1
j<q

�j�1;q�1�Edj ÿ EHj��Edq ÿ EHq�
�
: �28�

The conditional sign probability P�sp

��jEdj;EH� may be

obtained (sp is the sign of Ep) by ®rst calculating the joint

probability P
sdj��1

P�Ep; sd1jEd1j; . . . ; sdnjEdnj
��EH�

and then by deriving the marginal distribution. The conclusive

formula is rather intricate. We prefer to introduce in (26) the

approximation

�dj � �p for j � 1; . . . n:

Then the marginal distribution
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P�EpjEH� � L exp

�
ÿ 1

2 E2
p � 1

2

Pn
j�1

�1;j�1�sp�n
isoj ÿ EHj�2

�
�29�

is obtained, where �n
isoj � �Rdj ÿ Rp�. The distribution (29)

integrates the Wilson component [say exp�ÿE2
p=2�] with the

contribution provided by the prior knowledge of the �n
isoj.

Now

P�sp � sH� � 0:5� 0:5 tanh

�
ÿP

j

�1;j�1RHj�
n
isoj

�
� 0:5� 0:5 tanh

�P
j RHj�

n
isoj

�2
j

�
� 0:5� 0:5 tanh

�P
j jFHjj�isoj

�2
j

�
: �30�

Equation (30) is our conclusive formula for the centric case.

3.5. The MIR case. The probability distribution P(Ep,Ed|EH) in
P1

The characteristic function of the distribution

P�Ap;Ad1; . . . ;Adn;Bd1; . . . ;BdnjEH1; . . . ;EHn� �31�
is

C�up; ud1; . . . ; udn; vp; vd1; . . . ; vdn�

� exp

�
i

�Pn
j�1

udjAHj � vdjBHj

�
ÿ 1

4u
2
p

ÿ 1
4

Pn
j�1

ej�u2
dj � v2

dj� ÿ 1
2 up

Pn
j�1

udj ÿ 1
2 vp

Pn
j�1

vdj

ÿ 1
2

Pn
i;j�1
i6�j

�udiudj � vdivdj�
�
: �32�

The joint probability distribution function (31) may be

obtained by Fourier inversion of (32): we have

P�Ep;EdjEH�

� �2��ÿ2�n�1�2�n�1� R�1
ÿ1

. . .
R�1
ÿ1

expfÿiTUÿ 1
2 UKUg dU

� �ÿ�n�1��det K�ÿ1=2 expfÿ 1
2 TKÿ1Tg; �33�

where

T � �21=2Ap; 21=2�Ad1 ÿ AH1�; . . . ; 21=2�Adn ÿ AHn�;
21=2Bp; 21=2�Bd1 ÿ AH1�; . . . ; 21=2�Bdn ÿ BHn��;

U � �up; ud1; . . . ; udn; vp; vd1; . . . ; vdn�

K � Q 0

0 Q

���� ����;
Q �

1 1 . . . 1

1 e1 . . . 1

. . . . . . . . . . . .

1 1 . . . en

���������

���������;
det K �

�Qn
j�1

�2
j

�2

:

We have

P�Ep;EdjEH� � �ÿ�n�1��det K�ÿ1=2 exp

�
ÿ �11�A2

p � B2
p�

ÿPn
j�1

�j�1;j�1��Adj ÿ AHj�2 � �Bdj ÿ BHj�2�

ÿPn
j�1

�1;j�1�Ap�Adj ÿ AHj� � Bp�Bdj ÿ BHj��

ÿ Pn
j;q�1
j<q

�j�1;q�1��Adj ÿ AHj��Adq ÿ AHq�

� �Bdj ÿ BHj��Bdq ÿ BHq��
�
; �34�

where �jq are the elements of the matrix Kÿ1. Since

Kÿ1 � Qÿ1 0

0 Qÿ1

���� ����;
the expressions for the �ij stated in P�1 hold also for P1. We can

then rewrite (34) in the form

P�Ep;EdjEH� � �ÿ�n�1��det K�ÿ1=2 exp

�
ÿ �A2

p � B2
p�

�Pn
j�1

�1;j�1jEp ÿ �Edj ÿ EHj�j2

ÿ Pn
j;q�1
j<q

�j�1;q�1��Adj ÿ AHj��Adq ÿ AHq�

� �Bdj ÿ BHj��Bdq ÿ BHq��
�
: �35�

A mathematical procedure similar to that used in P�1 (i.e.

�d � �p) leads to

P��pjRp;Rd;EH� � �2�Io�G��ÿ1 exp��p cos��p ÿ #p��; �36�

where

tan#p �
Pn

j�1 Gj sin�HjPn
j�1 Gj cos �Hj

� T

B
; �37�

Gj � 2RHj�
n
isoj=�

2
j � 2jFHjj�isoj=j�jj2; �38�

�p � �T2 � B2�1=2: �39�

#p is the most probable value of �p and �p its reliability

parameter. The relations (36)±(39) will be our tools for the

experimental applications in the next paper (Giacovazzo et al.,

2002).

4. SIRAS and MIRAS cases

4.1. The SIRAS case in P1

The following additional notation will be used to treat the

SIRAS±MIRAS cases:



fj � f 0
j ��fj � if 00j � f 0j � if 00j ;

F� � jF�j exp�i��� � Fh;

Fÿ � jFÿj exp�i�ÿ� � Fÿh;

E�d � A�d � iB�d ;

Eÿd � Aÿd � iBÿd :

E�d and Eÿd are pseudo-normalized structure factors (i.e.

normalized with respect to the native protein). Let us study

the conditional probability distribution

P�Ap;A�d ;Aÿd ;Bp;B�d ;Bÿd jA�H;AÿH;B�H;BÿH�;
in short P, under the following mathematical model:

A�d � Ap � A�H � j��j cos#�

�
�PN

j�1

fj cos 2�h � rj �
PH
j�1

�f 0j cos 2�h � rj ÿ f 00j sin 2�h � rj�

� j��j cos#�
��

�1=2
p ;

B�d � Bp � B�H � j��j sin#�

�
�PN

j�1

fj sin 2�h � rj �
PH
j�1

�f 0j sin 2�h � rj � f 00j cos 2�h � rj�

� j��j sin#�
��

�1=2
p ;

Aÿd � Ap � AÿH � j�ÿj cos#ÿ

�
�PN

j�1

fj cos 2�h � rj �
PH
j�1

�f 0j cos 2�h � rj � f 00j sin 2�h � rj�

� j�ÿj cos#ÿ
��

�1=2
p ;

Bÿd � ÿBp � BÿH � j�ÿj sin#ÿ

�
�
ÿPN

j�1

fj sin 2�h � rj �
PH
j�1

�ÿf 0j sin 2�h � rj � f 00j cos 2�h � rj�

� j�ÿj sin#ÿ
��

�1=2
p ;

where �� � ��=�1=2
p . The characteristic function of the

distribution P is given by

C�up; u�d ; uÿd ; vp; v�d ; vÿd �
� exp i�u�d A�H � uÿd AÿH � v�d B�H � vÿd BÿH�
� expfÿ 1

4 ��u2
p � v2

p� � e�d �u�2
d � v�2

d � � eÿd �uÿ2
d � vÿ2

d �
� 2up�u�d � uÿd � � 2vp�v�d ÿ vÿd � � 2�u�d uÿd ÿ v�d vÿd ��g;

where e� � 1� j��j2. The Fourier transform of C gives

P � �ÿ3�e�eÿ�ÿ1�det K�ÿ1=2 expfÿ 1
2 �E0Kÿ1E0�g; �40�

where

K �

1 �e��ÿ1=2 �eÿ�ÿ1=2 0 0 0

�e��ÿ1=2 1 �e�eÿ�ÿ1=2 0 0 0

�eÿ�ÿ1=2 �e�eÿ�ÿ1=2 1 0 0 0

0 0 0 1 �e��ÿ1=2 �ÿeÿ�ÿ1=2

0 0 0 �e��ÿ1=2 1 ÿ�e�eÿ�ÿ1=2

0 0 0 ÿ�eÿ�ÿ1=2 ÿ�e�eÿ�ÿ1=2 1

������������

������������
;

E0 � �Ap21=2; �A�d ÿ A�H��2=e��1=2; �Aÿd ÿ AÿH��2=eÿ�1=2;

Bp21=2; �B�d ÿ B�H��2=e��1=2; �Bÿd ÿ BÿH��2=eÿ�1=2�:
After some calculations, (40) reduces to

P � �ÿ3�e�eÿ�ÿ1�det K�ÿ1=2 expfÿ�1� �j��j�ÿ2 � �j�ÿj�ÿ2�
� �A2

p � B2
p� ÿ �j��j�ÿ2��A�d ÿ A�H�2 � �B�d ÿ B�H�2�

ÿ �j�ÿj�ÿ2��Aÿd ÿ AÿH�2 � �Bÿd ÿ BÿH�2�
� 2�j��j�ÿ2�Ap�A�d ÿ A�H� � Bp�B�d ÿ B�H��
� 2�j�ÿj�ÿ2�Ap�Aÿd ÿ AÿH� ÿ Bp�Bÿd ÿ BÿH��g: �41�

Equation (41) may be rewritten in a simpler form:

P � �ÿ3�e�eÿ�ÿ1�det K�ÿ1=2 expfÿjEpj2 ÿ �j��j�ÿ2

� jE�d ÿ �Ep � E�H�j2 � �j�ÿj�ÿ2jEÿd ÿ �Ep � EÿH�j2g: �42�
The change of variables

Ap � Rp cos �p; A�d � R�d cos ��d Aÿd � Rÿd cos�ÿd
Bp � Rp sin�p; B�d � R�d sin��d ; Bÿd � Rÿd sin�ÿd

reduces equation (41) to

P � �ÿ3�j���ÿj�ÿ2RpR�d Rÿd expfÿR2
p ÿ �j��j�ÿ2

� �R2
p � R�2

d � R�2
H ÿ 2R�d R�H cos���d ÿ ��H�

� 2RpR�d cos���d ÿ �p� ÿ 2RpR�H cos���p ÿ ��H��
ÿ �j�ÿj�ÿ2�R2

p � Rÿ2
d � Rÿ2

H ÿ 2Rÿd RÿH cos��ÿd ÿ �ÿH�
� 2RpRÿd cos��ÿd � �p� ÿ 2RpRÿH cos���p � �ÿH��: �43�

The use (see x3.5) of the phase relations

��d � �p; �ÿd � ÿ�p

gives

P��pj . . .� � expf2�j��j�ÿ2R�H�R�d ÿ Rp� cos��p ÿ ��H�
� 2�j�ÿj�ÿ2RÿH�Rÿd ÿ Rp� cos��p � �ÿH�g: �44�

In terms of |F|'s, (44) is rewritten as

P��pj . . .� � expfG� cos��p ÿ ��H� �Gÿ cos��p � �ÿH�g
� expfX cos��p ÿ #p�g; �45�

where

G� � 2jF�H j��iso=j��j2; Gÿ � 2jFÿH j�ÿiso=j�ÿj2;
��iso � jF�d j ÿ jFpj; �ÿiso � jFÿd j ÿ jFpj

tan#p �
�G� sin��H ÿGÿ sin�ÿH�
�G� cos ��H �Gÿ cos�ÿH�

� T

B
; �46�

X � �T2 � B2�1=2: �47�
#p is the best estimate of �p, X is the reliability factor.

Equation (46) is of very simple use [as well as (30) and (37)

for the SIR and the MIR cases]; however, some details are

necessary to disclose its internal mechanism. Let us:

(i) rewrite (46) in the most useful form

tan#p �
��iso sin��H ��ÿiso sin�ÿ�H

��iso cos��H ��ÿiso cos�ÿ�H

; �48�

where �ÿ�H � ÿ�ÿH ;
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(ii) denote by F 0H the heavy-atom structure factor arising

from the real scattering (i.e. from f 0H � f 0
H ��f 0H) and by F 00H

that from the imaginary scattering (i.e. from f 00H). We will

assume only one species of heavy atom and we will consider a

few didactical cases:

(a) f 0H � f 00H (then jF 0Hj � jF 00H j). In this case,

��iso � �ÿiso; �
�
H � �ÿ�H and (48) reduces to

tan#p � ���iso sin��H�=���iso cos��H�:
Accordingly, #p � '�H if ��iso � �ÿiso > 0, #p � ��H � � if

��iso � �ÿiso < 0. This is nothing but the classical SIR case: the

anomalous scattering does not add any valuable information

to the phase indication provided by (30) (see Fig. 1a).

(b) f 00H is comparable with f 0H (then jF 00H j is also comparable

with jF 0Hj), ��iso > 0;�ÿiso > 0 with j�ÿisoj> j��isoj. Then (48)

may be written as

tan#p � �j��isoj sin��H � j�ÿisoj sin�ÿ�H �
� �j��isoj cos��H � j�ÿisoj cos�ÿH�ÿ1; �49�

according to which 'p is estimated between ��H and �ÿ�H , closer

to 'ÿ�p . This situation is illustrated in Fig. 1b);

(c) f 00H is comparable with f 0H , ��iso < 0;�ÿiso < 0 with

j�ÿisoj> j��isoj. Then (48) reduces to

tan#p � �j��isoj sin���H � �� � j�ÿisoj sin��ÿ�H � ���
� �j��isoj cos���H � �� � j�ÿisoj cos��ÿ�H � ���ÿ1;

which estimates �p between �'�H � �� and ��ÿ�H � ��, closer to

��ÿ�H � ��. This situation is illustrated in Fig. 1c).

(d) f 00H is comparable with f 0H , ��iso < 0;�ÿiso > 0 with

j�ÿisoj> j��isoj. In this case, (48) reduces to

tan#p � �j��isoj sin���H � �� � j�ÿisoj sin�ÿ�H �
� �j��isoj cos���H � �� � j�ÿisoj cos �ÿ�H �ÿ1;

which estimates 'p between �'�H � �� and �ÿ�H , closer to �ÿ�H

(see Fig. 1d).

All four ®gures indicate that (46) is a sensible way of

assigning the phases given ��iso, �ÿiso, FH . We check how

accurate (46) may be in an ideal case [we postpone to the

paper by Giacovazzo et al. (2002) the applications to real

data]. To this purpose, we use as protein data the calculated

data of 1srv (Walsh et al., 1999), space group C2221, unit-cell

parameters a = 63.47, b = 65.96, c = 75.03 AÊ , 1186 non-H atoms

and three S atoms in 145 amino acids. The SIRAS case was

simulated by substituting Se for S and by selecting values of

�f 0 � ÿ8;�f 00 � 3. The results are shown in Table 1, where

we give the average phase error hj��jiSIRAS for the NREF1

re¯ections with a weight I1�X�=Io�X� larger than the W value.

The value hj��jiSIRAS is the average difference (in �) between

the phase estimates provided by (46) and the true phases (i.e.

the values calculated from the published crystal structure).

Ii�X� is the modi®ed Bessel function of order i calculated at X,

as given by (47). To evaluate the ef®ciency of (46), we have

also simulated the SIR case, by eliminating the anomalous

dispersion from the Se atoms. The corresponding ®gures are

tabulated in columns 4 and 5. In particular, hj��jiSIR is the

average phase error for the NREF2 re¯ections with a weight

I1�G�=Io�G� larger than W [the argument G is de®ned by (21)].

The comparison shows quite evidently the larger ef®ciency of

(46): about 41� is the error for the 7303 re¯ections if (21) is

applied, only 22� if (46) is used.

Figure 1
Four situations for the SIRAS case are depicted: (a) jF 0H j � jF 00H j; (b) F 00H
compared with jF 0H j, �ÿiso > 0; (c) jF 00H j compared with jF 0H j, �ÿiso < 0,
�ÿiso < 0; (d) jF 00H j compared with jF 0H j, ��iso < 0, �ÿiso > 0.



4.2. The MIRAS case in P1

The extension of the theory described in x4.1 to the MIRAS

case is straightforward. We only provide the conclusive

formulas when more derivatives with heavy atoms as anom-

alous scatterers are available. In this case, (45) is replaced by

P��pj . . .� � expfX cos��p ÿ #p�g; �50�
where

tan#p �
P

j �G�j sin��Hj ÿGÿj sin�ÿHj�P
j �G�j cos��Hj �Gÿj cos �ÿHj�

� T

B
�51�

X � �T2 � B2�1=2 �52�
The summation over j varies over the different derivatives.

5. Conclusions

The rigorous use of the joint probability distribution functions

enabled us to provide new probabilistic formulas estimating

the protein phases for the SIR±MIR and SIRAS±MIRAS

cases. The formulas are of very simple cases, include the

treatment of the errors and, as we prove in the following paper

(Giacovazzo et al., 2002), are very ef®cient.

The main results of the paper have been presented at the

Euroconference on Phasing Biological Macromolecules

(PHABIO) held in Martina Franca (TA), 23±27 June 2001.

APPENDIX A

In the case of perfect isomorphism, Fd � Fp � FH . If C�up; ud�
is the characteristic function in P�1 of P�Ep;EdjEH�, then (see

x3.1)

C�up; ud� � exp�iudEH� expfÿ�u2
p � u2

d � 2upud�=2g: �53�
The Fourier transform of (53) gives

P�Ep;EdjEH� � �2��ÿ2
R1
ÿ1

R1
ÿ1

expfÿ0:5�u2
p � u2

d � 2upud�

ÿ i�Epup � �Ed ÿ EH�ud�g dup dud

� �2��ÿ1=2 exp�ÿE2
p=2��2��ÿ1

� R1
ÿ1

expfiup�Ed ÿ �Ep � EH��g dup

� �2��ÿ1=2 exp�ÿE2
p=2���Ed ÿ �Ep � EH��; �54�

where � is the Dirac delta function.

The distribution (54) may be so interpreted: Ep satis®es the

usual Wilson distribution because it is not constrained by the

prior knowledge of EH. Vice versa, such a prior information

constrains Ed to be distributed according to the Dirac delta

function centered on Ep + EH. This last property is trivial and

does not add any additional information to the de®nition Fd =

Fp + FH.
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Table 1
1srv calculated data; the reliability of the estimates (46) is compared with
that of the SIR estimates [equation (38)].

W NREF2 h�j�jiSIRAS (�) NREF1 hj��jiSIR (�)

0.0 7303 22 7303 41
0.1 6648 21 6648 40
0.2 6144 21 6144 39
0.3 5698 21 5698 38
0.4 5239 21 5239 37
0.5 4763 21 4763 36
0.6 4312 20 4312 35
0.7 3806 20 3806 33
0.8 3043 19 3043 31
0.9 1861 19 1861 27


